Vandermonde and Wronskian matrices over division rings
نویسندگان
چکیده
منابع مشابه
On nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملon nest modules of matrices over division rings
let $ m , n in mathbb{n}$, $d$ be a division ring, and $m_{m times n}(d)$ denote the bimodule of all $m times n$ matrices with entries from $d$. first, we characterize one-sided submodules of $m_{m times n}(d)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $d$. next, we introduce the notion of a nest module of matrices with entries from $d$. we ...
متن کاملTriangularization over finite-dimensional division rings using the reduced trace
In this paper we study triangularization of collections of matrices whose entries come from a finite-dimensional division ring. First, we give a generalization of Guralnick's theorem to the case of finite-dimensional division rings and then we show that in this case the reduced trace function is a suitable alternative for trace function by presenting two triangularization results. The first one...
متن کاملPolynomials and Vandermonde Matrices over the Field of Quaternions
It is known that the space of real valued, continuous functions C(B) over a multidimensional compact domain B ⊂ R , k ≥ 2 does not admit Haar spaces, which means that interpolation problems in finite dimensional subspaces V of C(B) may not have a solutions in C(B). The corresponding standard short and elegant proof does not apply to complex valued functions over B ⊂ C. Nevertheless, in this sit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1988
ISSN: 0021-8693
DOI: 10.1016/0021-8693(88)90063-4